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mass in Hydrogen plus the mass in Helium then the Helium mass fraction is: (Mass of
Helium)/(Mass of Hydrogen 4+ Helium) or, in units of the proton mass, (4)/(4+12) = 1/4.
The observed abundances of Deuterium, > He and * He are all quite consistent with simple

predictions based on the theoretical conditions of the Universe at time 1-2 seconds (see

Kernin and Sarkar 1996).

These three observations really form the observation foundation of the Hot Big Bang
model. A fourth observation, that the Universe is filled with galaxies that are arranged
in a complex structure, can not easily be accounted for in this model. While the gen-
eral idea that structure formation via gravitational instability should produce observable
anisotropies in the CMB is consistent with our observations, the overall complexity of the
observed distribution of galaxies is not well understood yet. We will examine this issue in
great detail in later chapters.

Quverview of Relevant Cosmological Equations

The Robertson-Walker Metric

To place the Hot Big Bang model into a physical context necessitates a sensible mathe-
matical formulation. To assist with this formulation we assume that the universe on a large
scale 1s both homogeneous and isotropic. This assumption is known as the Cosmological
Principle and the observed isotropy of the expansion and the CMB are strong testaments
to its validity. If we accept this principle to be valid, then our task is to construct a ge-
ometrical model of the Universe that explicitly incorporates large scale homogeneity and
isotropy. Ideally, this model should be described by a relatively small number of param-
eters, all of which can be observationally determined. Much of this book is devoted to a
modern discussion of attempts to determine these parameters from observations. However,
before doing that we must describe the framework that allows observations to be directly

connected to our cosmological model.

To begin with, we note that General Relativity is a geometrical theory concerning
the overall curvature of space-time. Within that context we seek to specify the coordinate
properties of a homogeneous, isotropic, expanding Universe. If we are to fully describe

the Universe in geometrical terms, we must derive a metric which describes the coordinate
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paths that objects are allowed to take. In deriving this metric we must introduce the
concept of an event. An event is something which occurs at a certain place at a certain
time. Hence all events in the universe can be thought of as occurring in a four-dimensional
spacetime continuum, with three spatial dimensions and one dimension of time. To
compute the separation between any two events in spacetime, it is necessary to specify the
metric. As a simple example, consider the surface of a sphere, which can be thought of
as a two-dimensional analogue to the four-dimensional spacetime. Using simple spherical

trigonometry, the metric of a sphere can be written as
ds* = R? [(dqﬁ)z + cosz¢(d9)2] (10)

where ds denotes the distance between two points on the surface of the sphere, R is the
radius of the sphere, and d¢ and df are the difference in latitude and longitude between
the two points (measured in radians). With this expression, it is possible to compute the
separation between any two points along the surface of the sphere. Hence the geometry of

the sphere and the physical specification of events is completely described by its metric.

The geometry of four-dimensional spacetime is described by an analogous metric.
However, instead of computing the distance between two points on the surface of a sphere,
we wish to compute the separation between two events, which involves both space and
time. Special relativity allows one to show that the spacetime interval, ds, between two

events which occur near each other in flat space is given by
1
ds? = dt? — = (dwz + dy2 + dzz) (11)

where dt is the time interval between the two events (as determined by an inertial observer),
¢ 1s the speed of light, and de, dy, dz correspond to the separation between the two events
in each of the three spatial dimensions. Note that, unlike the metric for an ordinary sphere,
the spacetime metric need not always be positive. The geometry of spacetime is completely
specified by equation 11. A geodesic is the shortest interval between any two points in

spacetime.

Equation 11 assumes a flat Euclidean geometry, in which initially parallel lines always

remain parallel. However, according to Einstein’s theory of General Relativity, spacetime
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i1s curved by gravity, which is a manifestation of the energy density of matter. The sep-
aration between two events will therefore depend on the curvature of spacetime. This is

schematically shown in Figure 1-6 for three specific curvatures.

For a homogeneous and isotropic universe, the most general metric in curved space-
time is the Robertson-Walker metric, which was first proposed in 1934. Expressed in
spherical polar coordinates (r, 6, ¢), this metric takes the form

R%(t) dr?

c2 1— kr?

ds? = dt* — + r2d6* + r2sin?0do? (12)

where R(t) is the universal scale factor which describes the time evolution of the uni-
versal expansion, k denotes the curvature of spacetime (k = —1,0,1 for negative, zero, or
positive curvature), and the coordinate r is comoving with the universal expansion. If
we imagine a particle at rest with a given set of coordinates r.0, ¢, then as long as no
external forces operate on this particle. then the particle remains at those coordinates.
These coordinates are said to be comoving coordinates. They are related to physical

coordinates through the scale factor,

physicaldistance = R(t) * comovingdistance (13)

The Robertson-walker metric is independent of any particular gravitational theory.
Gravity enters through the scale factor R(t) and the curvature constant k; the distance
between any two spacetime events therefore depends on what specific cosmological model
is adopted. This specific cosmological model is determined by the values of R(t) and k

which can be observationally determined.
The Dynamaics of an Ezpanding Unwverse

Now that we have specified the metric that holds in a homogeneous and isotropic
Universe, the next step is to consider the dynamics of an expanding Universe. Since the
Universe has mass, then at all times the expansion must compete against the combined
(attractive) gravitational acceleration of that matter. In Newtonian mechanics this accel-

eration is given by
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V2@ = —4nGp (14)

where p is the matter density and ® is the gravitational potential. This equation is his-

torically known as Poisson’s equation.

This simple equation for gravitational acceleration does not apply in the very early
Universe due to the presence of very high energy photons. The majority of the mass-energy
in the early Universe is in the form of radiation moving at ¢. The high radiation pressure
drags the matter along with it and effectively counters the tendency for the matter to
collapse. In this sense, the Universe acts as a relativistic fluid with a pressure term whose
behavior is not adequately described by Newtonian mechanics. The details about the
Stress-Energy tensor in Einstein’s field equations are beyond the scope of this book (for
reference see Weinberg 1972; Peebles 1993) but they lead to a generalization of equation
14:

V2P = —4rG(p + ?C’—f) (15)

where 15 is the pressure (which we subsequently set to p; c=1) and the combined term p+3p
effectively becomes the gravitational mass density p, which produces the net gravitational

acceleration of material that decreases the expansion rate.

If we now consider a sphere of radius r; and volume V which has some mean gravita-

tional mass density within it, the total mass of that sphere is given by

M = py*V = (4 /3)(p + 3p)r; (16)

The acceleration at the surface of the sphere is given by Newton’s law of gravitation as

—GM/R%. Multiplying equation 13 by the term —G/R? then yields

acceleration =7y = —(4w/3)G(p + 3p)rs (17)
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where 72 refers to the second time derivative of the spatial coordinate, ry (the first time
derivative 7 is a velocity). Equation 17 is a standard equation in General Relativity and
it describes the evolution (e.g., expansion or contraction) of a homogeneous and isotropic
mass distribution. Within this sphere there is some net energy, E,,. This energy is pV.
If the material enclosed in ry moves so that it changes r, then F, changes in accordance
with how much work is done by the pressure of the fluid on the surface of the sphere. By

conservation of energy we then have

dE, = pdV +Vdp = —pdV (18)

Equation 18 states that the change in net energy is exactly equal to the change in volume
multiplied by the pressure. Rearranging the terms involving dV and defining the volume

as V = 47,3 (V = 3rsr?)

3
. dV fsrg Ty
p=—(p+p) T = =3(p+p) "5 = —3(p+p)." (19)

s S

Solving for p in equation 19 and plugging that solution in equation 17 yields the following

differential equation

is = (87/3)Gprs + (477/3)Gp'7j—g (20)

Ts

This is a messy differential equation. If we multiply both sides by the term 7, and choose
units such that the quantity (47/3)G =1 and let r, be x then we arrive at the following

functional form

i = 2pxd + pr’ (21)

Now the right hand side is just

< (pa?) (220)
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and the left hand side is just

d, .,
(@) (220)

Integrating both sides over time then yields

%/%(w’z)dt:/%(pxz)dt (22¢)

Switching back to normal units yields the first integral of equation 20:

it = (87/3)Gpri + K (23)

where K is a constant of integration which we can identify with the curvature term in the
Robertson-Walker metric. Equations 17 and 23 are the main equations of this cosmological

model.

If we consider the case of a static Universe where r, is, by definition, constant and

hence all derivatives are zero then equations 17 and 23 become

0=4n/3G(p+3p); 8n/3Gp+ K =0 (24)

Since the mass density p must be positive then to satisfy the constraint of a static Universe p
must be negative. Since normal matter cannot have negative pressure, Einstein introduced
the cosmological constant A into the field equations to serve as the source of negative
pressure. In the static Universe A balances the net gravitational acceleration. But the
Universe is not static, it is expanding according to the expansion scale factor R(t) given in
equation 13. Our hypothetical sphere radius r, will then be different at some later time,

t, such that

rs(t) =rs(t =0) % R(t) (25)

Equation 17 now becomes



