Problem Set Number 2 Solutions:
Seriously, make your work easier to follow!

Question 1:

First you need to assume a temperature to calculate a scale height for this problem. I choose a temperature such that $\mathrm{H}=7.5 \mathrm{~km}$

So for pressure:
$p=p_{o} \exp (-z / H)=800$ millbars
Since we assume constant T then ρ / ρ is a constant $\mathrm{P}=0.8 \mathrm{p}_{0}$ means that ρ must also be 20% less or $1.00 \mathrm{~kg} / \mathrm{m}^{3}$

Question 2:
As most of you complained, this was an annoying problem on unit conversions. But it was equally annoying to me as most of you did not perform a reality check on your answer. Everyone's procedures were correct but your answers varied quite a bit depending on how you decided to calculate the cylindrical volume. These kinds of questions are not stupid and are an important part of earth system science literacy.

Procedure:

1) compute daily rainfall by mass $\left(1.12 \times 10^{16}\right) \mathrm{kg}$
2) divide that by density to get the volume of water vapor $\left(1.12 \times 10^{13} \mathrm{~m}^{3}\right)$
3) that volume has to rain on a surface area - what fraction of the surface area of the earth is contained in this latitude range:

Area $=\int_{0}^{2 \pi} \int_{-15}^{15} R^{2} \cos \theta d \theta=2 \pi R^{2} \int_{-15}^{15} \cos \theta d \theta=2 \pi R^{2} * \sin _{-15}^{15}=\pi r^{2}$
($1 / 4$ of the total surface area of the earth is between $+/-15$ degrees latitude.)
4) divide 2 by 3 and get order 10 cm per day \rightarrow too high meaning the assuming that all the water vapor falls out, is pretty wrong.

Question 3:
a) mixing gives 29.5 ppt @ $\mathrm{T}=16 \mathrm{C}$ - on chart that's $1022 \mathrm{~kg} / \mathrm{m}^{3}$
b) adiabatic compressibility is defined as
$c_{S}^{2}=\frac{\Delta p}{\Delta \rho}$ which is constant in this case, since the problem says the sound speed is constant

So density change is
$\rho_{2}=\rho_{1}+\frac{1}{c_{s}}\left(p_{2}-p_{1}\right)=1020+\frac{99}{1500} * 100,000$ (convert bars to right units) $=$ $1024.4 \mathrm{~kg} / \mathrm{m}^{3}$
c) basically $\mathrm{dt} / \mathrm{dp}$ is too small for the initial value of parcel temperature differential to ever change; Parcel A will always be warmer.

Question 4:
a) Use ideal gas law at $T=183$ and $p=1000 \mathrm{MB} \rightarrow 1.23 \mathrm{~kg} / \mathrm{m}^{3}$ and inverse of that is the specific volume
b) use adiabatic lapse rate for final temperature (255.5 K) and then recomputed density using 700 mb and $\mathrm{T}=255.5 \rightarrow .955 \mathrm{~kg} / \mathrm{m}^{3}$ (big change).
c) well $\Delta \mathrm{H}=\mathrm{c}_{\mathrm{p}} \Delta \mathrm{T}$ and the change in temperature is $255.5-283(-27.5)$ change in internal energy is just $5 / 27$ of what you get above since $c_{v}=5 / 7$ of c_{p}
d)

Considering adiabatic expansion

$$
\begin{aligned}
& P_{1} V_{1}{ }^{\text {CP/CV }}=P_{2} V_{2}{ }^{C P / G V} \\
& (1000 \mathrm{mb})\left(1 \mathrm{~km}^{3}\right)\left(\frac{1005}{777}\right)=(700 \mathrm{mb}) V_{2} \\
& V_{2}=1.289 \mathrm{~km}^{3} \text { or } 1.2897 \times 10^{2} \mathrm{~m}^{3}
\end{aligned}
$$

To get the mass of air work is done on

$$
\begin{aligned}
& \rho_{700 \mathrm{mb}}=0.95 \mathrm{~kg}_{1} / \mathrm{m}^{3} \\
& \rho_{700 \mathrm{mb}} V_{700 \mathrm{mb}}=1.22 \times 10^{9} \mathrm{~kg}
\end{aligned}
$$

Mass of air that is 'worked' on

Since adiabatic process

$$
\Delta u=-\Delta w
$$

Work done:

$$
\begin{aligned}
& \Delta w=(-\Delta u)(\text { mass of air })=2.10 \times 10^{13} \mathrm{~J} \\
& (\ln 5)
\end{aligned}
$$

Problem 5:

a) First, ignore the effect of water vapor on air density. Then:

$$
\begin{aligned}
\rho_{s} & =\frac{p_{s}}{R T_{s}}=\frac{10^{5} \mathrm{~Pa}}{\left(287.04 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\right)(302 \mathrm{~K})} \\
\rho_{s} & =1.15 \mathrm{~kg} \mathrm{~m}^{-3}
\end{aligned}
$$

Using a reference pressure of 1 bar,

$$
\theta_{s}=T_{s}\left(\frac{p_{\text {ref }}}{p_{s}}\right)^{R / c_{p}}
$$

Since $p_{s}=p_{\text {ref }}$,

$$
\theta_{s}=T_{s}=302 K
$$

b)

$$
\begin{array}{r}
\int_{T_{s}}^{T_{t}} \frac{d t}{T}=\frac{R}{c_{p}} \int_{p_{s}}^{p_{t}} \frac{d p}{p} \\
\ln \left(\frac{T_{t}}{T_{s}}\right)=\frac{R}{c_{p}} \ln \left(\frac{p_{t}}{p_{s}}\right) \\
\frac{T_{t}}{T_{s}}=\left(\frac{p_{t}}{p_{s}}\right)^{R / c_{p}} \\
T_{t}=(302 K)(.125)^{2 / 7} \\
T_{t}=167 \mathrm{~K}
\end{array}
$$

c)

Let $T_{Q 1} / T_{Q 2}$ be the temps at 750 mb before/after heating.

$$
\begin{aligned}
Q_{\text {latent }}=L q & =c_{p}\left(T_{Q 2}-T_{Q 1}\right) \\
& =c_{p}\left(\theta_{Q 2}-\theta_{Q 1}\right)\left(\Pi_{Q}\right) \\
\Rightarrow \theta_{Q 2} & =\theta_{Q 1}+\frac{L q}{c_{p} \Pi_{Q}} \\
& \quad c_{p} \Pi_{Q}
\end{aligned}
$$

If no heat is added between 750 mb and 125 mb ,

$$
\begin{aligned}
& \theta_{t}=\theta_{Q 2}=302 K+\frac{\left(2.5 \times 10^{6} \mathrm{Jkg}^{-1}\right)(0.019)}{\left.\left(1000 \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)(.750)^{2 / 7}\right)} \\
& \theta_{t}=354 K
\end{aligned}
$$

Calculating the temperature at 125 mb ,

$$
\begin{aligned}
T_{t} & =\theta_{t} \Pi_{t}=(354 \mathrm{~K})(.125)^{2 / 7} \\
T_{t} & =195 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
\rho_{t} & =\frac{p_{t}}{R T_{t}}=\frac{\left(.125 \times 10^{5} \mathrm{~Pa}\right)}{\left(287.04 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}\right)(195 \mathrm{~K})} \\
\rho_{t} & =.223 \mathrm{~kg} \mathrm{~m}^{-3}
\end{aligned}
$$

d)

$$
\begin{aligned}
\Pi & =\left(\frac{p}{p_{\text {ref }}}\right)^{R / c_{p}} \\
\Rightarrow \frac{d \Pi}{d z} & =\left(\frac{p}{p_{\text {ref }}}\right)^{R / c_{p}-1}\left(\frac{R}{c_{p} p_{\text {ref }}}\right) \frac{d p}{d z} \\
& =-\left(\frac{p}{p_{\text {ref }}}\right)^{R / c_{p}-1}\left(\frac{R \rho g}{c_{p} p_{\text {ref }}}\right) \\
& =-\left(\frac{p}{p_{\text {ref }}}\right)^{R / c_{p}-1}\left(\frac{R g}{c_{p} R T}\right)\left(\frac{p}{p_{\text {ref }}}\right) \\
& =-\Pi \frac{g}{c_{p} T} \\
\frac{d \Pi}{d z} & =-\frac{g}{c_{p} \theta}
\end{aligned}
$$

Estimating z_{t},

$$
\begin{aligned}
\frac{\left(\Pi_{t}-\Pi_{s}\right)}{z_{t}} & =-\frac{g}{c_{p} \theta} \\
\Rightarrow z_{t} & =\frac{c_{p}\left(\theta_{t}-\theta_{s}\right)\left(1-\Pi_{t}\right)}{2 g} \\
& =\frac{\left(1000 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\right)(354+302 \mathrm{~K})\left[1-(.125)^{2 / 7}\right]}{2\left(9.8 \mathrm{~m} \mathrm{~s}^{-2}\right)} \\
z_{t} & =15 \mathrm{~km}
\end{aligned}
$$

e)

$$
\begin{aligned}
N^{2} & =\frac{\left(\frac{g}{\theta}\right)\left(\theta_{t}-\theta_{s}\right)}{z_{t}} \\
& =\frac{2\left(9.8 m \mathrm{~m}^{-2}\right)(354-302 \mathrm{~K})}{344+302 \mathrm{~K})(15000 \mathrm{~m})} \\
N^{2} & =1.05 \times 10^{-4} \mathrm{~s}^{-2}
\end{aligned}
$$

