From Supercomputers to GPUs What a physicist should know about current computational capabilities

Craig Rasmussen (Research Support Services, University of Oregon)

Which one?

Gordon Bell Prize: Price Performance

Year	Gigaflop/s Performance
1988	1
1998	1,020
2008	1,350,000

Year	Gigaflop/s Cost
1989	\$2,500,000
1999	\$6,900
2009	\$8

The range and scale of computational resources is breathtaking

Mega	Giga	Tera	Peta	Exa
10 ⁶	10 ⁹	10 ¹²	10 ¹⁵	10 ¹⁸
Displays	Networks & Storage bandwidths	Operations per second	Operations per second	Operations per second

• Notice the discrepancy between what you can see (display), store, and compute! *(should have referenced source)*

I just reviewed a proposal requesting 180,000,000 core hours of computer time for the DOE

Interested in the physics?

I just reviewed a proposal requesting 180,000,000 core hours of computer time for the DOE

- Nuclear Physics
 - Domain Wall Fermions and Highly Improved Staggered Quarks for Lattice QCD
 - Chroma Lattice QCD Code Suite
 - Weakly Bound and Resonant States in Light Isotope Chains Using MFDn
- High Energy Physics
 - Hardware/Hybrid Accelerated Cosmology Code for Extreme Scale Cosmology
 - The MILC Code Suite for Quantum Chromodynamics (QCD) Simulation and Analysis
 - Advanced Modeling of Particle Accelerators

180,000,000 core hours enables a lot of science

- Fusion Energy Physics
 - Understanding Fusion Edge Physics Using the Global Gyrokinetic XGC1 Code
 - Addressing Non-Ideal Fusion Plasma Magnetohydrodynamis Using M3D-C1
- Basic Energy Science
 - Parsec: A Scalable Computational Tool for Discovery and Design of Excited State Phenomena in Energy Materials
 - BerkeleyGW: Massively Parallel Quasiparticle and Optical Properties Computation for Materials and Nanostructures
 - Materials Science using Quantum Espresso
 - Large-Scale 3-D Geophysical Inverse Modeling of the Earth
 - Large-Scale Molecular Simulations with NWChem

180,000,000 core hours seems like a lot!

- Advanced Scientific Computing Research
 - Optimization of the BoxLib Adaptive Mesh Refinement Framework . . .
 - High-Resolution CFD and Transport in Complex Geometries . . .
- Biological and Environmental Research
 - CESM Global Climate Modeling
 - Multi-Scale Ocean Simulation for Studying Global to Regional Climate Change
 - Gromacs Molecular Dynamics (MD) Simulation for Bioenergy and Environmental Biosciences
 - Meraculous: a Production de novo Genome Assembler for Energy-Related Genomics Problems

Who are the players?

- Lawrence Berkeley National Laboratory (6)
- Oak Ridge National Laboratory (2)
- Argonne, Pacific Northwest, Los Alamos National Laboratories
- Brookhaven National Laboratory
- Jefferson National Accelerator Facility
- National Center for Atmospheric Research
- Princeton (2)
- Universities of Texas, Arizona, Iowa State

CESM Global Climate Modeling: Increase in the state-level extreme precipitation by 2050s

The range and scale of computational resources is breathtaking

Mega	Giga	Tera	Peta	Exa
10 ⁶	10 ⁹	1012	10 ¹⁵	10 ¹⁸
Displays	Networks & Storage bandwidths	Operations per second	Operations per second	Operations per second

• But what is the limit?

What's the limit?

- Frequency?
- Transistors?

Heat is a concern!

00	O Mari Pref	erences		
Color Data G	PU Misc. Navig	ation Nuke	OpenCL	Pa 1
AMD Radeon HD -	FirePro D700 Compute	Engine		
Use Device	Use			\$
Device Vendor				
Driver Version	OpenCL 1.2			
AMD Radeon HD -	FirePro D700 Compute	Engine		
Use Device	Use			
Device Vendor				
Driver Version				
Intel(R) Xeon(R) CF	U E5-1680 v2 @ 3.00	GHz		
Use Device	Disabled			
Device Vendor				
Driver Version				
		Ok F	Reset	Cancel

	CPU 0 Proximity	65*C	
CPU	CPU 0 Proximity	65°C	
PU	CPU 1 Proximity	72°C	
logic Board	CPU 1 Core	79°C	
Memory	CPU 1 Proximity	72°C	
Power Supply	CPU S Core	66°C	
	CPU X Core	81°C	
	GPU 0 Diode	62*C	
	GPU 0 Proximity	55°C	
	GPU 0 Diode	62°C	
	CPU 0 Proximity	55°C	
	GPU 1 Diode	68°C	
	GPU 1 Proximity	64°C	
	GPU 1 Diode	68°C	
	GPU 1 Proximity	64°C	
	SSD	49°C	
	SSD	49°C	
	Memory DIMM 0 Proximity	60°C	
	Memory - TMOR	50°C	
	Memory - TM0r	50°C	
	Memory DIMM 1 Proximity	64°C	
	Memory - TM1R	50°C	
	Memory - TM1a	78°C	
	Memory - TM1r	50°C	
	Memory - TM2a	70°C	
	Memory - TM2b	63°C	
	Memory - TM2c	64°C	
	Memory - TM2e	66°C	
	Memory - TM2f	65°C	
	Memory - TM3a	65*C	
	Memory - TM3b	61°C	
	Memory - TM4a	5°C	
	Memory - TM4b	62*C	
	Memory DIMM X Proximity	64°C	
	DC In Proximity	30°C	
	Platform Controller Hub Die	56°C	

When's the limit?

- Frequency
- Transistors

When did the music die? I gotta retire by 2020!

Machines are getting really really really big

- What can we dream about doing with them?
- Think big
 - because if we don't think big we can be assured that someone else is
 - need to stay competitive

SciDAC: Scientific Discovery through Advanced Computing

- Program areas include:
 - Climate science, fusion research, high energy physics, nuclear physics, astrophysics, material science, chemistry, particle accelerators, biology, and subsurface flow of contaminants through groundwater
- <u>Analgren From Convection to Explosion: End-to-End Simulation of</u> <u>Type la Supernovae</u>
- Berry <u>Parallelization in Time: Applications to Plasma Turbulence</u>
- Drut From Lattice QCD to Ultracold Atoms and Graphene: accelerating the Monte Carlo approach to many-fermion physics
- Ferraro Fluid Modeling of Fusion Plasmas with M3D-C1
- Iacovella <u>Flexible order parameters for quantifying the rate-dependent</u> energy release mechanism of Au <u>nanowires</u>
- Jones MHD Turbulence in a Cosmic Structure Context

VisIT Example (Dave Pugmire, Hank Childs, ...)

ParaView Examples Astrophysics

How do I get access to large computational facilities?

- Local clusters within research groups and departments
- ACISS cluster at UO
- INCITE program within the Department of Energy

ACISS System - Compute Resources

- Basic nodes (17 Teraflops)
 - 128 ProLiant SL390 G7
 - Two Intel X5650 2.66 GHz 6-core CPUs per node (1,536 total cores)
 - 72 GB DDR3 RAM per basic node
- Address requirements for more compute cores available for running many jobs simultaneously and larger jobs

ACISS System - Compute Resources

- GPU nodes (156 Teraflops)
 - 52 ProLiant SL390 G7
 - Two Intel X5650 2.66 GHz 6-core CPUs per node (624 total cores)
 - 3 NVIDIA M2070 GPUs per node (156 total GPUS)
 - 72GB DDR3 per GPU node
- Address needs for science problems requiring greater computational horsepower.

ACISS System - Compute Resources

- Fat nodes
 - 16 ProLiant DL 580 G7
 - Four Intel X7560 2.266 GHz 8-core CPUs per node (512 total cores)
 - 384 GB DDR3 RAM per fat node
- Address requirement for scientific problems needing very large memory.

INCITE Seeks Research Proposals to Accelerate Scientific Discoveries and Technological

- The DOE INCITE program provides substantial computational resources every year via a competitive proposal process
 - http://hpc.science.gov/

Fortran is not dead: long live Fortran

Convolution filter applied to image of Lena Soojblom

