
Craig Rasmussen (Research Support Services, University of Oregon)

Computer Science for the
Physical Sciences

Week 4

Which one is most like
your brain?

Spiking neurons and dendritic trees

Are computers fast enough to compete?

• 109 neurons x 103 Hz x 100 operations

- ~1014 op/s

• Roadrunner computer at Los Alamos

- 16x180 = 2880 hybrid nodes with 4 IBM cell cores

- each cell core has 8 SPU cores

- 2880 x 4 x 8 = 92K compute cores

- each SPU ~200 x 109 flops (single precision)

- 92K x 200 x 109 > 1015 flops

Are computers big enough to compete?

• Visual cortex

- 109 neurons

- 1013 neurons synaptic connections

• Los Alamos’ Roadrunner

- 92K cores

- 10K transistors per core

- 109 transistors

- where are the equivalent connections (memory pathways)?

Do computers have enough memory to compete?

• Assume memory is in the synaptic connections

- 109 neurons x 104 connections x 1 byte

- ~1013 bytes

• Roadrunner

- >1013 bytes

Do computers have enough bandwidth to
compete?

• Assume the bandwidth is in the synaptic connections

- 1013 connections x 1000 Hz

- 1016 bytes/sec

• Roadrunner

- 11520 Cell processors x 20 Gbytes/sec

- 1014 bytes/sec

So why can’t thinking machines think?

• Big enough

• Fast enough

• Have enough memory

• But lack bandwidth

- using memory to simulate synaptic connections

- must time share access to memory

• So what, we’ll just run 100-1000 times slower

• And Voila, we’ll have a brain!

• But we don’t know the circuit (but can be learned with STDP)

But LANL Roadrunner required 2.35 MW.
So why doesn’t your just brain melt?

Ivan Sutherland: “The tyranny of the clock”
Should time be quantized?

• A chip is big

• A chip is clocked at 2-3 GHz

• Takes several clock cycles to traverse the chip

• Therefore modern chips have many clocks (10K?)

• A transistor does something each clock cycle

- mostly nothing but waste energy

• Neurons only fire when necessary (mostly true)

• Ivan Sutherland examining computer circuits that are asynchronous

- only active when necessary

Computer Science Minor: Last week

• Required courses (24 credits)

- Introduction to Computer Science I-II-III

- Elements of Discrete Mathematics I-II

- Introduction to Data Structures

• Upper-division courses (8 credits)

- Computer Architecture - Introduction to Compilers

- Introduction to Algorithms - Computational Science

- C/C++ and Unix - Bioinformatics

- Operating Systems - Data Mining

- Automata Theory - Introduction to Artificial Intelligence

- Software Methodology I-II - Machine Learning

Python and Shell

Revision Control and Make Files

Lists and Maps

Complexity

Computer Science Minor: This week

• Required courses (24 credits)

- Introduction to Computer Science I-II-III

- Elements of Discrete Mathematics I-II

- Introduction to Data Structures

• Upper-division courses (8 credits)

- Computer Architecture - Introduction to Compilers

- Introduction to Algorithms - Computational Science

- C/C++ and Unix - Bioinformatics

- Operating Systems - Data Mining

- Automata Theory - Introduction to Artificial Intelligence

- Software Methodology I-II - Machine Learning

Functions and pipes

Revision Control and Make Files

Computer Science Minor: Make files

• Required courses (24 credits)

- Introduction to Computer Science I-II-III

- Elements of Discrete Mathematics I-II

- Introduction to Data Structures

• Upper-division courses (8 credits)

- Computer Architecture - Introduction to Compilers

- Introduction to Algorithms - Computational Science

- C/C++ and Unix - Bioinformatics

- Operating Systems - Data Mining

- Automata Theory - Introduction to Artificial Intelligence

- Software Methodology I-II - Machine Learning

Functions and pipes

Revision Control and Make Files

A makefile maintains groups of programs based on
dependencies being satisfied

#
this is a comment

#
define environment variables (compilers/linker/libraries...)

CC = gcc

#
define targets

all: hello

hello.o: hello.c
 $(CC) -c hello.c -o hello.o

hello: hello.o
 $(CC) -o hello hello.o

run tests
check:

clean up
clean:
 rm -f hello.o hello

tab

target
dependency

Computer Science Minor: Functions, classes, and
Unix pipes

• Required courses (24 credits)

- Introduction to Computer Science I-II-III

- Elements of Discrete Mathematics I-II

- Introduction to Data Structures

• Upper-division courses (8 credits)

- Computer Architecture - Introduction to Compilers

- Introduction to Algorithms - Computational Science

- C/C++ and Unix - Bioinformatics

- Operating Systems - Data Mining

- Automata Theory - Introduction to Artificial Intelligence

- Software Methodology I-II - Machine Learning

Functions and pipes

Revision Control and Make Files

Classes

• A class encapsulates functions and state variables

• Class Foo

- int x, y, z; // state variables

- void f1(); // function

• A class is a template (recipe) for creating objects

• A program can have pointers to many live objects at once

• Each object contains state

• In parallel programming state is evil!

- who modified x and when?

Functions

• A function takes input and produces output

• Functions are composable

- f3(f2(f1(x)))

• What happens to the state variables?

- f2() consumes the output of f1()

• Going stateless is good!

Unix pipes

• A unix shell program takes input and produces output

• standard input (file)

• standard output (file)

• Unix shell programs are composable with pipes

- program1 | program2 | program3

- the output of program1 is said to be “piped” to the input of program2

• What happens to the state variables (files)?

- program2 consumes the output of program1

Computer Science Minor: Revision control

• Required courses (24 credits)

- Introduction to Computer Science I-II-III

- Elements of Discrete Mathematics I-II

- Introduction to Data Structures

• Upper-division courses (8 credits)

- Computer Architecture - Introduction to Compilers

- Introduction to Algorithms - Computational Science

- C/C++ and Unix - Bioinformatics

- Operating Systems - Data Mining

- Automata Theory - Introduction to Artificial Intelligence

- Software Methodology I-II - Machine Learning

Functions and pipes

Revision Control and Make Files

Git is now the standard version control system

• Configuring Git

- git config —global user.name “Your Name”

- git config —global user.email “user@uoregon.edu”

- git config —global core.editor emacs

• Creating a new shared repository

- mkdir repo

- cd repo

- git init —bare

Shared Repository

Private Repositories
Me You HairGuy

mailto:user@uoregon.edu

Creating a local copy of an existing repository and
adding files

• Clone a repository

- git clone /usr/local/repos/repo me

- git clone URL

• Add a file

- cd me

- touch README

- git add README

- git commit -m”Initial version.” README

Shared Repository

Private Repositories
me

Sharing changes to a file

• Edit the file then compare changes

- emacs README

- git diff README

• Discovery

• git status

• Commit changes to local repository

- git commit -m”a message” README

• Push changes to shared repository

- git push

Shared Repository

Private Repositories
Me You HairGuy

Retrieving changes that a teammate has made

• Fetch the latest from the shared repository

- git fetch

• Merge with local private repository

- git merge origin/master

• If you have merge conflicts you must fix them

- emacs README

- git add README

- git commit -m”Liked my changes better”

Shared Repository

Private Repositories
Me You HairGuy

