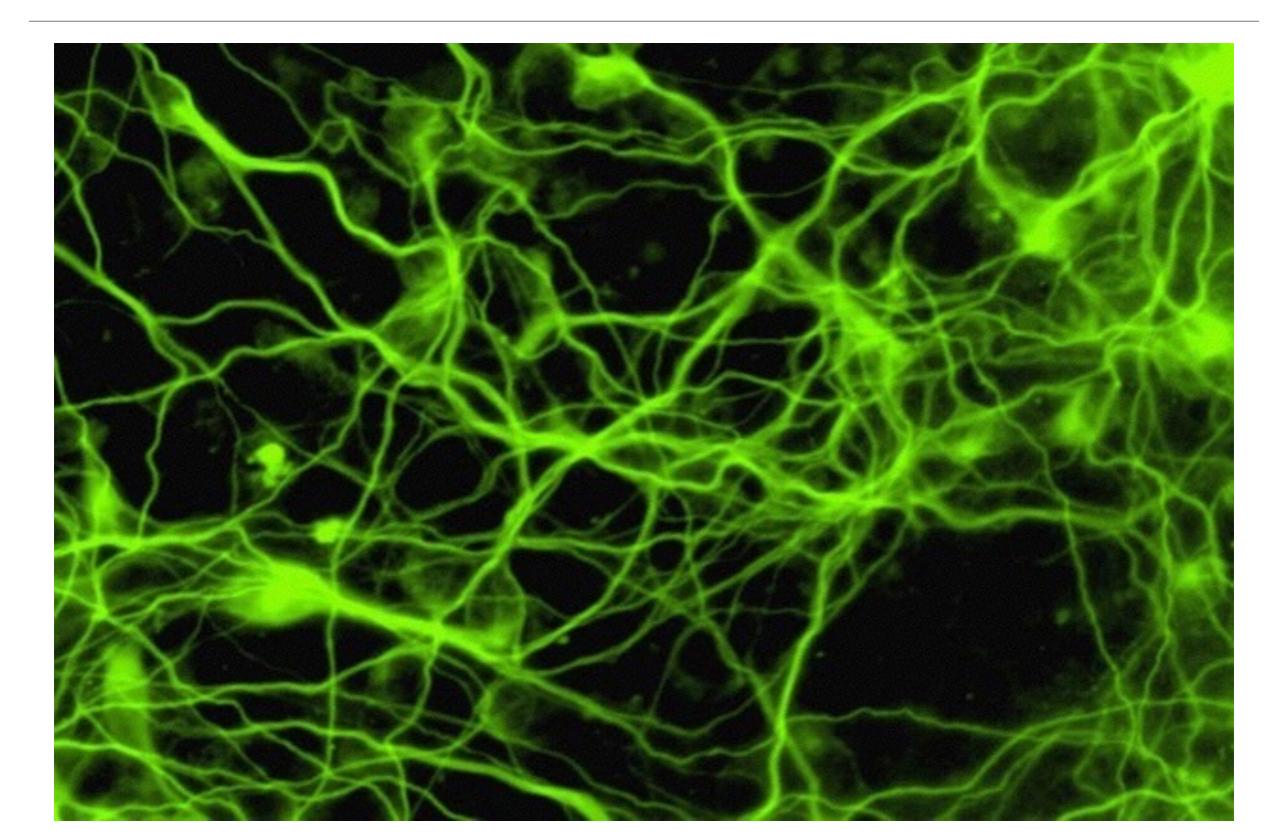
Computer Science for the Physical Sciences Week 4

Craig Rasmussen (Research Support Services, University of Oregon)


Which one is most like your brain?

Spiking neurons and dendritic trees

Are computers fast enough to compete?

- 10^9 neurons x 10^3 Hz x 100 operations
 - ~10¹⁴ op/s
- Roadrunner computer at Los Alamos
 - 16x180 = 2880 hybrid nodes with 4 IBM cell cores
 - each cell core has 8 SPU cores
 - 2880 x 4 x 8 = 92K compute cores
 - each SPU ~200 x 10⁹ flops (single precision)
 - 92K x 200 x $10^9 > 10^{15}$ flops

Are computers big enough to compete?

- Visual cortex
 - 10⁹ neurons
 - 10¹³ neurons synaptic connections
- Los Alamos' Roadrunner
 - 92K cores
 - 10K transistors per core
 - 10⁹ transistors

- 12 Data
 SPARC SPARC SPARC SPARC Core 1
 L2 Data

 Bank 0
 L2 Tag
 ORAM
 L2 Tag
 DRAM

 Bank 0
 L2 Tag
 ORAM
 L2 Tag
 DRAM

 Bank 0
 L2 Tag
 ORAM
 L2 Tag
 Bank 2

 Bank 0
 L2 Tag
 ORAM
 L2 Tag
 Bank 2

 Bank 0
 L2 Tag
 ORAM
 L2 Tag
 Bank 2

 Bank 1
 Dram
 L2 Tag
 Bank 2
 Bank 2

 Bank 1
 Tag
 Dram
 L2 Tag
 Bank 2

 L2 Bank 1
 Tag
 Erstein
 FPd
 Esser

 L2 Data
 Bank 1
 Dram
 FPd
 Esser
 Esser

 L2 Data
 Bank 1
 Bank 1
 L2 Tag
 Bank 3
 L2 Data

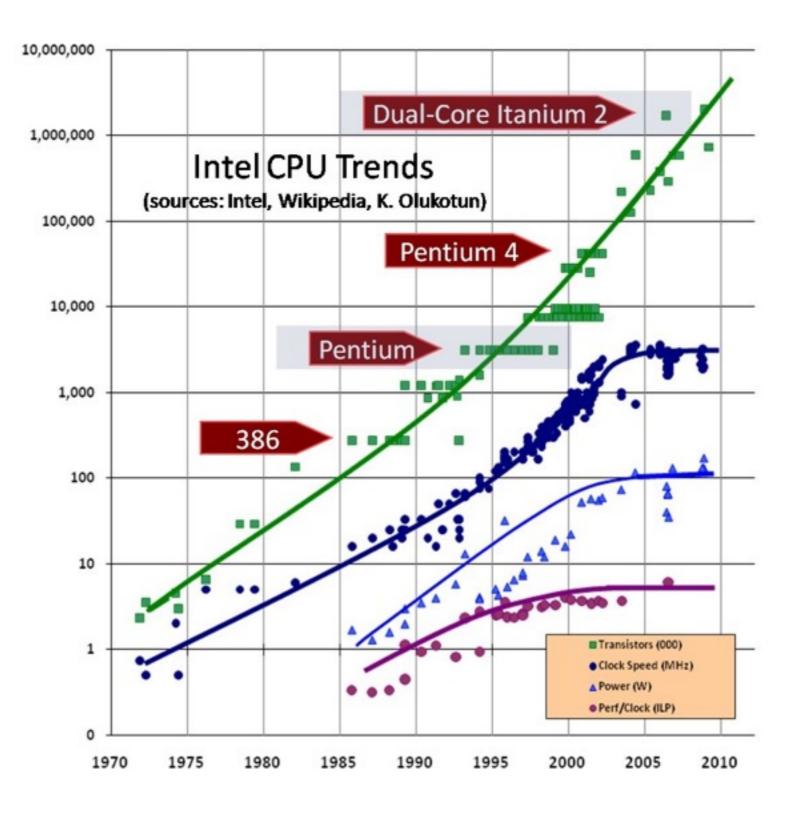
 L2 Data
 Bank 1
 Bank 1
 Bank 3
 L2 Data
 Data

 Bank 1
 SPARC SPARC SPARC SPARC
 SPARC
 Bank 3
 L2 Data

 Bank 1
 SPARC SPARC SPARC SPARC
 SPARC
 Bank 3
 L2 Data
- where are the equivalent connections (memory pathways)?

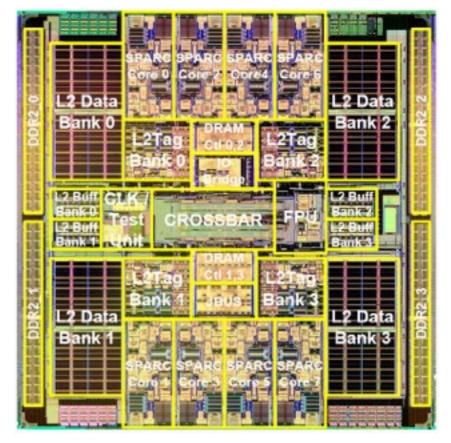
Do computers have enough memory to compete?

- Assume memory is in the synaptic connections
 - 10⁹ neurons x 10⁴ connections x 1 byte
 - ~10¹³ bytes
- Roadrunner
 - >10¹³ bytes


Do computers have enough bandwidth to compete?

- Assume the bandwidth is in the synaptic connections
 - 10¹³ connections x 1000 Hz
 - 10¹⁶ bytes/sec
- Roadrunner
 - 11520 Cell processors x 20 Gbytes/sec
 - 10¹⁴ bytes/sec

So why can't thinking machines think?


- Big enough
- Fast enough
- Have enough memory
- But lack bandwidth
 - using memory to simulate synaptic connections
 - must time share access to memory
- So what, we'll just run 100-1000 times slower
- And Voila, we'll have a brain!
- But we don't know the circuit (but can be learned with STDP)

But LANL Roadrunner required 2.35 MW. So why doesn't your just brain melt?

Ivan Sutherland: "The tyranny of the clock" Should time be quantized?

- A chip is big
- A chip is clocked at 2-3 GHz
- Takes several clock cycles to traverse the chip
- Therefore modern chips have many clocks (10K?)
- A transistor does something each clock cycle
 - mostly nothing but waste energy
- Neurons only fire when necessary (mostly true)
- Ivan Sutherland examining computer circuits that are asynchronous
 - only active when necessary

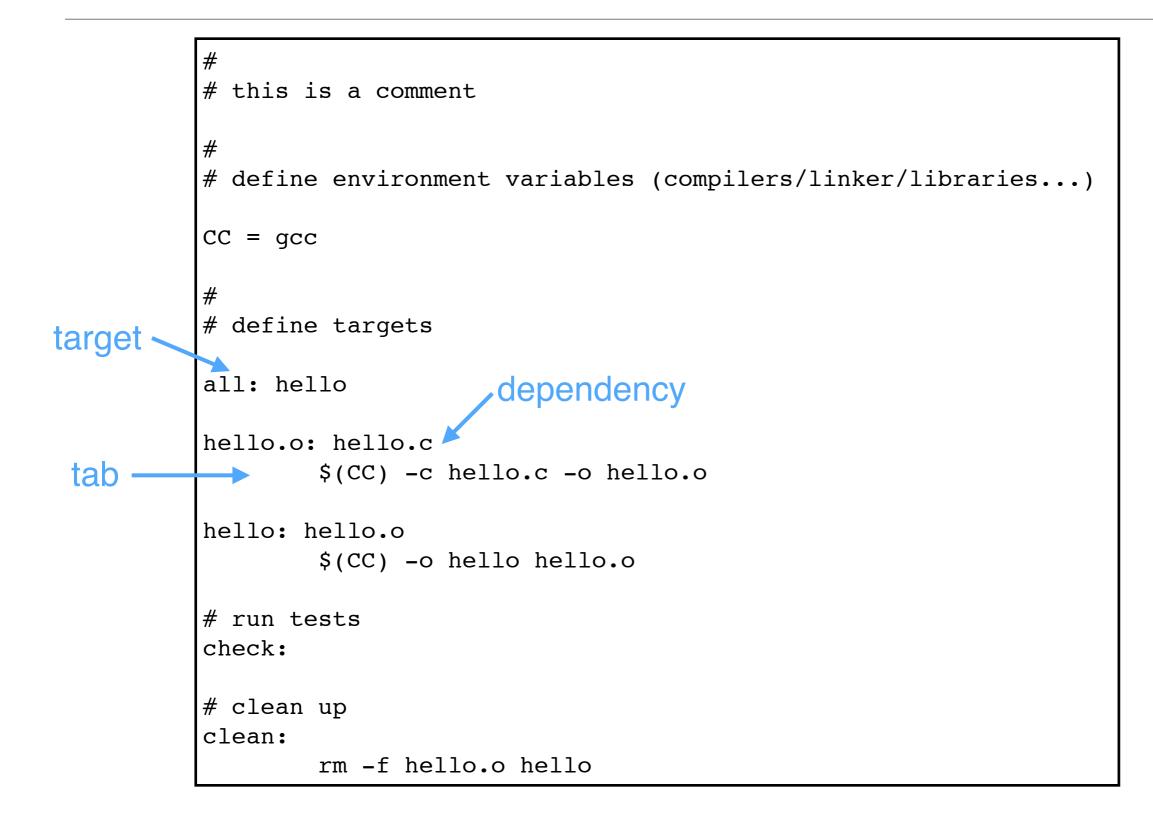
Computer Science Minor: Last week

- Required courses (24 credits)
 - Introduction to Computer Science I-II-III
 - Elements of Discrete Mathematics I-II
 - Introduction to Data Structures Lists and Maps
- Upper-division courses (8 credits)
 - Computer Architecture
 - Introduction to Algorithms Complexity -
 - C/C++ and Unix Python and Shell
 - Operating Systems
 - Automata Theory
 - Software Methodology I-II Revision Control and Make Files

- Introduction to Compilers
- Computational Science
- Bioinformatics
- Data Mining
- Introduction to Artificial Intelligence
- Machine Learning

Computer Science Minor: This week

- Required courses (24 credits)
 - Introduction to Computer Science I-II-III
 - Elements of Discrete Mathematics I-II
 - Introduction to Data Structures
- Upper-division courses (8 credits)
 - Computer Architecture
 - Introduction to Algorithms
 - C/C++ and Unix Functions and pipes Bio
 - Operating Systems
 - Automata Theory
 - Software Methodology I-II Revision Control and Make Files


- Introduction to Compilers
- Computational Science
- Bioinformatics
- Data Mining
- Introduction to Artificial Intelligence
- Machine Learning

Computer Science Minor: Make files

- Required courses (24 credits)
 - Introduction to Computer Science I-II-III
 - Elements of Discrete Mathematics I-II
 - Introduction to Data Structures
- Upper-division courses (8 credits)
 - Computer Architecture
 - Introduction to Algorithms
 - C/C++ and Unix Functions and pipes B
 - Operating Systems
 - Automata Theory
 - Software Methodology I-II Revision Control and Make Files

- Introduction to Compilers
- Computational Science
- Bioinformatics
- Data Mining
- Introduction to Artificial Intelligence
- Machine Learning

A *makefile* maintains groups of programs based on dependencies being satisfied

Computer Science Minor: Functions, classes, and Unix pipes

- Required courses (24 credits)
 - Introduction to Computer Science I-II-III
 - Elements of Discrete Mathematics I-II
 - Introduction to Data Structures
- Upper-division courses (8 credits)
 - Computer Architecture
 - Introduction to Algorithms
 - C/C++ and Unix Functions and pipes B
 - Operating Systems
 - Automata Theory
 - Software Methodology I-II Revision Control and Make Files

- Introduction to Compilers
- Computational Science
- Bioinformatics
- Data Mining
- Introduction to Artificial Intelligence
- Machine Learning

Classes

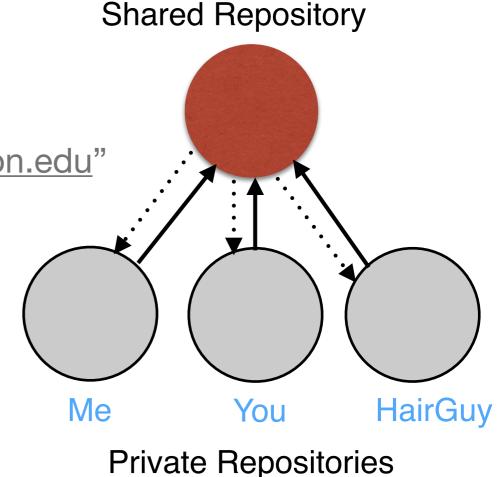
- A class encapsulates functions and state variables
- Class Foo
 - int x, y, z; // state variables
 - void f1(); // function
- A class is a template (recipe) for creating objects
- A program can have pointers to many live objects at once
- Each object contains state
- In parallel programming state is evil!
 - who modified x and when?

Functions

- A function takes input and produces output
- Functions are composable
 - f3(f2(f1(x)))
- What happens to the state variables?
 - *f2()* consumes the output of *f1()*
- Going stateless is good!

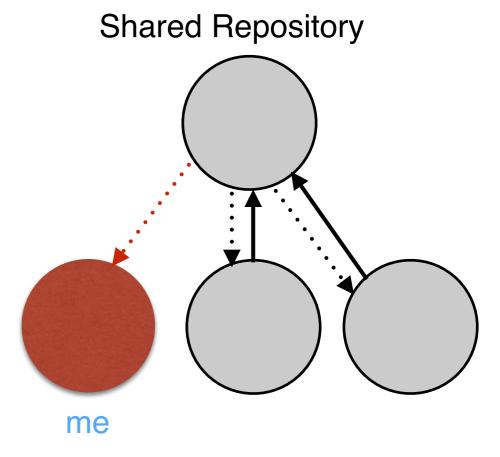
Unix pipes

- A unix shell program takes input and produces output
 - standard input (file)
 - standard output (file)
- Unix shell programs are composable with pipes
 - program1 | program2 | program3
 - the output of program1 is said to be "piped" to the input of program2
- What happens to the state variables (files)?
 - program2 consumes the output of program1


Computer Science Minor: Revision control

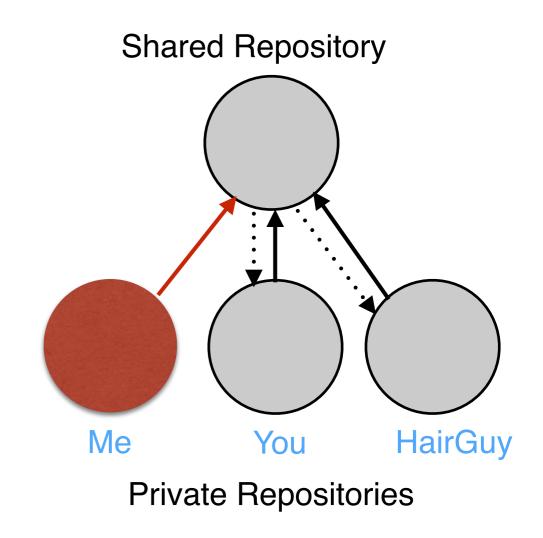
- Required courses (24 credits)
 - Introduction to Computer Science I-II-III
 - Elements of Discrete Mathematics I-II
 - Introduction to Data Structures
- Upper-division courses (8 credits)
 - Computer Architecture
 - Introduction to Algorithms
 - C/C++ and Unix Functions and pipes B
 - Operating Systems
 - Automata Theory
 - Software Methodology I-II Revision Control and Make Files

- Introduction to Compilers
- Computational Science
- Bioinformatics
- Data Mining
- Introduction to Artificial Intelligence
- Machine Learning

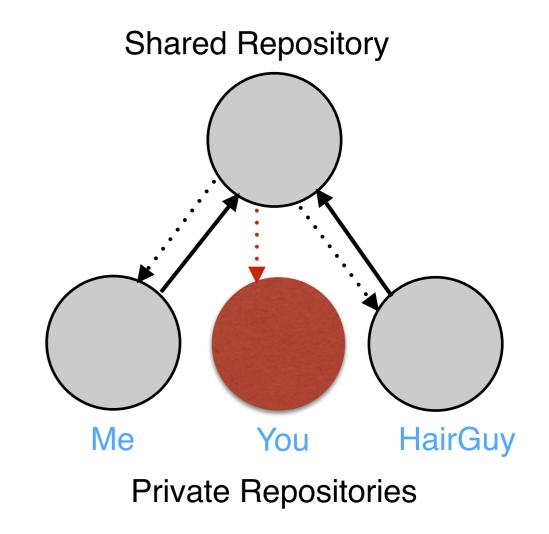

Git is now the standard version control system

- Configuring Git
 - git config -global user.name "Your Name"
 - git config -global user.email "user@uoregon.edu"
 - git config —global core.editor emacs
- Creating a new shared repository
 - mkdir repo
 - cd repo
 - git init -bare

Creating a local copy of an existing repository and adding files


- Clone a repository
 - git clone /usr/local/repos/repo me
 - git clone URL
- Add a file
 - cd me
 - touch README
 - git add README
 - git commit -m"Initial version." README

Private Repositories


Sharing changes to a file

- Edit the file then compare changes
 - emacs README
 - git diff README
- Discovery
 - git status
- Commit changes to local repository
 - git commit -m"a message" README
- Push changes to shared repository
 - git push

Retrieving changes that a teammate has made

- Fetch the latest from the shared repository
 - git fetch
- Merge with local private repository
 - git merge origin/master
- If you have merge conflicts you must fix them
 - emacs README
 - git add README
 - git commit -m"Liked my changes better"

