MACHINE LEARNING

AS AN EXTENSION OF LINEAR REGRESSION

- 2D Linear regression seeks to minimize a cost function (mean squared error) given a simple linear model Y=Wx.
- Many real world data scenarios involve MUCH higher dimensional spaces
 - Curse of dimensionality higher dimensional spaces don't behave like 3D
 - Can the machine pick up patterns that would elude us?

TYPES OF "LEARNING"

- Unsupervised Learning
 - Cluster recognition, kNN
 - PCA, T-SNE dimension reduction
- Supervised Learning

https://github.com/oreillymedia/t-SNE-tutorial

- Involve a "training" set where data samples have a known label, category or target - input -> output
- MANY algorithms and techniques

SUPERVISED LEARNING

- Algorithms can be thought of as various ways of chopping up multidimensional space, for example in classification problems.
- Can we "learn" the rules of a signal that result in an outcome? Then when the program sees a similar (but different) input, it can give the correct response.
- Classic problem space computer vision, recognizing speech, "expert" systems, pattern matching, face recognition.

GRADIENT BOOSTING

- Regularization
- Add penalty to the loss
 function based
 on model
 complexity

GRADIENT BOOSTING

 Builds up an ensemble of decision trees step by step, each step trying to improve the loss function while keeping the model complexity down (regularization)

http://xgboost.readthedocs.io/en/latest/model.html

GRADIENT BOOSTING

- Kaggle Higgs Boson Challenge
 - XGBoost used to produce the winning model in challenge to classify tau + tau -> Higgs boson decay events versus background
 - Use of machine learning to detect small signals in background noise
- Boosted trees also successful at many other classification problems

NEURAL NETWORKS

- History From perceptrons to deep and recurrent nets
- Advancements in training algorithms

AI AND THE GAME OF GO - NEURAL NETWORKS

- Until 2015, computer programs could only achieve an "amateur dan" rating; a decent human could reliably beat them. Go is MUCH harder to program than chess.
- In 2017 Google's AlphaGo program beat the #1 player in the world in a tournament setting. This is a result of advancements in the training of neural networks.
- NN trained with 30 million moves from human games, then multiple NNs paired against one another to train and improve.

DEEP NEURAL NETS

Computer vision

- Convolutional nets inspired by similar structures to our own vision.
- ImageNet Challenge
 - 1.2 million images
 - 1000 classes
 - Best NNs can get ~85% accuracy

DEEP NEURAL NETS

- Speech generation direct from text
 - https://google.github.io/tacotron/
 - "The buses aren't the problem, they actually provide a solution."
 - "The buses aren't the PROBLEM, they actually provide a SOLUTION."

WHAT MAKES IT POSSIBLE?

Computational resources now allow training of machine learning models of impressive complexity and capability

SOFTWARE TOOLS

- General Tools
 - Python scikit.learn
 - Optimizers, unsupervised and supervised learning, classification, simple NN
 - Tools in many other languages: R, Java, Julia, C++, Mathematica
- Neural Networks
 - Keras, TensorFlow, Theano, DeepLearning4J

QUESTIONS ... AND DEMO