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Note: This handout is for reference—you don’t need to read it through.

The original (MS-Word) version of this document is at http://eatworms.swmed.edu/~leon/core_2002/stats/formulas.doc. Some symbols may not appear correctly in the web version. 

I. Basic Probability

Probability, as it turns out, is very difficult to define. (See Section VI for more on this.) I will assume that you all have an intuitive understanding of phrases such as “There is a 30% chance of rain tomorrow” or “The probability that a fair die comes up 5 is 1/6”. There are two basic rules for combining probabilities:

1. The probability that all of several independent events occurs is the product of the individual event probabilities. 

For instance, if we flip a coin and throw a die, the chance that the coin turns up heads and the die turns up 5 is 
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. Independent means that neither event tells you anything about the other.

2. The probability that one of several mutually exclusive events occurs is the sum of the individual event probabilities. 

For instance, the chance that a thrown die comes up either 4 or 5 is 
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. Mutually exclusive means that at most one of the events can occur. It is important to figure out which of these two rules applies in a given situation (if either does). Mutually exclusive events are not independent, and independent events are not mutually exclusive. 

II. Population parameters

Suppose x is some random variable, and xi is a sample of x. If f(x) is some function of x, the expected value of f(x) is defined as:
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The population mean (x (which may just be written ( if it is understood that we are talking about x) is defined as:
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(If not specified, sums run from 1 to N, where N is the number of samples.)

The population variance 
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) is defined as:
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The population standard deviation (x is the square root of the variance.

The population median M is defined by:
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III. Sample parameters
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Notice the resemblance to the definition of (.


[image: image12.wmf]2

x

s

 (or just 
[image: image13.wmf]2

s

), the sample variance, is an estimate of 
[image: image14.wmf]2

x

s

:

[image: image15.wmf](

)

1

2

2

-

-

=

å

N

x

x

s

i

x


This is similar to the definition of 
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, except that 
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 is used in place of (, and the denominator is N-1 rather than N. We have to use 
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 because we don’t generally know (, and we use N – 1 instead of N because 
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is always a little less than 
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. (Section VII outlines a proof that N – 1 is the correct denominator.)
The sample standard deviation sx is the square root of the sample variance:
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The two formulas are equivalent—the first is more intuitive, the second a little less work to calculate. 

The Standard Error of the Mean or S.E.M. is an estimate of the standard deviation of 
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Standard Error of the Mean = 
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The sample median 
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 is an estimate of M.

To calculate the sample median, repeatedly discard the highest and lowest numbers in your dataset until you have just one or two numbers left. If you have one number left, that is 
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. If you have two numbers left, 
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 is their average.

IV. Distributions

A. The Poisson Distribution

The Poisson distribution usually results when you count how many times some event occurs, when the events occur independently, and when there is no upper bound (or only a very large upper bound) on the number of events. Good examples are the number of phage that infect a bacterium, the number of times a particular gene is present in a library of random clones, or the number of atoms of a radioisotope that decay in a given time. In any given experiment, the number of events will be a whole number 0, 1, 2, … It has one parameter, the mean (, the average number of events. The probability of seeing n events is:
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The variance of a Poisson is equal to the mean, so the standard deviation is the square root of the mean. An important special case is n = 0. This is the probability that the event will not happen even once, e.g., the probability that your gene will not be present in the library, or that a bacterium will be uninfected:
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B. The binomial distribution

The binomial distribution results when an experiment can have just two results (positive or negative, for instance), and when you do the experiment several times and count the number of times you get one particular result. Some examples are the number of progeny of a genetic cross that have a particular phenotype or the number of vesicles released at a synapse. (In the latter case, the two possibilities are that a vesicle is released when the neuron fires, or that it is not released.) It has two parameters, N and p, where N is the number of experiments, and p is the probability of a positive in any given one. In the first example, N would be the number of vesicles at a particular synapse and p the probability that a particular vesicle will be released. In the second, N would be the total number of progeny from the cross, and p the probability that a given progeny has the phenotype you’re counting. In addition, we define q as (1-p) for convenience. n, the number of positives, can range from 0 to N. The probability of a given n is:
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The mean of a binomial is Np and the variance is Npq. If N is large and p is small, the binomial is approximated by a Poisson with 
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C. The normal (Gaussian) distribution

The normal distribution is the most common distribution for a continuous variable (weight of a mouse, measured rate of an enzymatic reaction, …). Most classical statistical tests are based on the assumption that the variable being measured is normally distributed. (However, I have given you only one test that makes that assumption: Student’s t test.) The formula for the normal distribution looks like this:
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(You will never use this formula.) ( and 
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 are the mean and variance as usual. A Poisson distribution can be approximated by a normal distribution of the same mean and variance if ( is large. A binomial can be approximated by a normal distribution if Np and Nq are both large.

V. Statistical tests

Detailed instructions follow for each of the four tests I want you to know how to use, with examples for three. There are dozens of computer programs for carrying out these and other tests, which you should feel free to use. An Excel spreadsheet for these tests is available at http://eatworms.swmed.edu/~leon/core/stats/ (click on “Calculations and tests spreadsheet”). Section VIII contains instructions for using GraphPad Prism (available on your computers) for three of the four tests—unfortunately, Prism can’t do the chi-squared goodness-of-fit test. 

A. Probability of a binomial: chi-squared goodness-of-fit or Pearson statistic

Typically when you measure a binomial, you know exactly what N (the number of measurements) is, and you are trying to measure p, the probability of a particular result. For instance, in a genetic experiment you may wish to know if the frequency of a particular class of progeny equals the expected frequency. 

Suppose you cross two animals, both of which you suspect to be heterozygous for the same recessive mutation. 2/30 progeny you look at have the mutant phenotype. Is this consistent with an expected Mendelian frequency of ¼? 

	
	Wild-type
	Mutant
	Total

	Actual number (
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	28
	2
	30

	Predicted number (
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	22.5
	7.5
	30

	Difference (
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	5.5
	-5.5
	0
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	1.344
	4.033
	5.378


Call the numbers you actually counted f. Now calculate the numbers you would have expected based on the theoretical frequency (3/4 : 1/4 in this case) and call them 
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. Square the differences, divide them by the 
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’s, and sum the quotients up. This sum (5.378 in the example) is distributed approximately as chi-squared if the null hypothesis is true. Look it up in the chi-squared table in the first row (df = 1). It is greater than 5.02, the critical value for ( = 0.05, but less than 5.41, the critical value for ( = 0.02, so you would conclude that 2/30 is significantly different from 1/4 at 5% but not 2%. 

The chi-squared test is an approximate test, really valid only when the expected numbers, the 
[image: image39.wmf]f
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’s, in each category are large (>5 is the usual advice). 

This test can be used for experiments that produce more than two classes. For instance, to test whether two mutations are linked, you might want to check for a 9:3:3:1 ratio of the 4 progeny classes. The degrees of freedom will be n – 1, where n is the number of classes.

B. Equality of two binomial probabilities

Suppose you want to test whether the spontaneous mutation frequency is the same in two yeast strains. You start 20 cultures of each strain and plate them out a medium that will allow survival only of cells that have acquired a spontaneous mutation in the URA3 gene. You find that 2/20 strain 1 cultures and 9/20 strain 2 cultures contain spontaneous ura3 mutant cells. Is 2/20 significantly different from 9/20? This is called a “test of independence”, since we are testing whether the mutation frequency is independent of strain. Another name under which you'll see it listed is “contingency tables”.

The general idea here is the same as for the previous chi-squared test: we have some actual counts f, we compute expected counts 
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 for each case and add them up to get a statistic that is distributed approximately as chi-squared. In this case we have four f’s and we need two distinct p’s, one representing the proportion of the data from strain 1, and the other representing the frequency of cultures with mutations in URA3 (which, according to the null hypothesis, is the same for both cultures). Since we have no theory to tell us what either p is, we have to estimate them from the data. We estimate p1 as 20/40 = 0.5, i.e., the number of cultures in the strain 1 experiment as a proportion of the total. We estimate pmutant as 11/40 = 0.1968, the total number of cultures containing URA3 mutants as a proportion of total cultures. Now we can calculate 
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 for a given cell as the product of the row probability times the column probability times the total number of cultures. For instance, the cell in the strain 1 row and the mutant column has 
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	cultures with URA3 mutants
	cultures without URA3 mutants
	total

	strain 1
	2
	18
	20
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 = 5.5
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 = 14.5
	p1 = 0.5
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 = 2.23
	
[image: image47.wmf](

)

f

f

f

)

)

2

-

 = 0.84
	

	strain 2
	9
	11
	20
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 = 5.5
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 = 14.5
	q2 = 0.5
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 = 0.84
	

	total
	11
	29
	40

	
	pmutant = 0.275
	qmutant = 0.725
	


Adding all four cells, we get chi-squared = 6.14. Looking this up in the chi-squared table (df = 1), we see it is between 5.41 and 6.63, and therefore is significant at 0.02 but not 0.01.

This test can be used for tables of any dimensions. The degrees of freedom for an R ( C table will be 
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C. Equality of the means of two normally distributed variables: Student’s t test

Suppose you have a series of measurements xi, for i from 1 to Nx and a second series of measurements yi for i from 1 to Ny. You want to know if the two samples are significantly different. Begin by calculating 
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, sx, 
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, and sy as shown above. Then calculate t and df as follows:
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Look the result up in the t table. For instance, if df = 11 and t = 2.563, 
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 and 
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 are significantly different at the 4% level (2.563 > 2.328), but not at the 2% level (2.563 < 2.718).

D. Equality of two variables sampled from an unknown distribution: the Mann-Whitney U-test.

Imagine that these numbers are the results of a test carried out on 19 cancer patients, 13 of whom had died two years later, and 6 of whom were still alive. How would you test if there is a correlation between test results and survival? You can do it by asking if the distributions of the test statistic are the same for the surviving and deceased patients. This is the kind of situation for which one might use a t-test, but a t-test assumes normality, and these data are clearly not normally distributed. The Mann-Whitney U-test can be used in this case.

	
	blood protease level

	deceased
	16, 30, 0.2, 14, 35, 6.0, 9.1, 3400, 1.0, <0.1, 4.7, 15, 2.8

	survived
	23, 0.8, <0.1, <0.1, 0.2, 0.1


To compute U, list the samples from smallest to largest like this:

	d
	<0.1
	
	0.2
	
	1.0
	2.8
	4.7
	6.0
	9.1
	14
	15
	16
	
	30
	35
	3400

	s
	<0.1
<0.1
	0.1
	0.2
	0.8
	
	
	
	
	
	
	
	
	23
	
	
	

	
	½
½
	1
	1½
	2
	
	
	
	
	
	
	
	
	10
	
	
	


Now, for each observation in the smaller sample, count the number of observations in the other sample that are lower in value. Count ½ for each tied observation in the other sample. (For instance, in the example, we count ½ for each of the two <0.1 values in sample s because there is one tied observation in sample d.) These numbers are shown in the bottom row of the table—they add up to 15.5. Call this sum C. U is the larger of C and n1n2 - C, in this case 62.5. Look this up in the U table, using the size of the larger sample for n1 and the size of the smaller for n2. (n1 = 13 and n2 = 6 in this case.) We see that 62.5 > 62, so that the difference is (barely) significant at the 5% level. Alternatively, you can use the web page at http://eatworms.swmed.edu/~leon/stats/utest.html to get a P value. Typing in n1 = 13, n2 = 6, and U =62.5 there, we get Ptwo-tailed = 0.0365, confirming that the difference is significant at the 5% level.

Appendices

VI. What is probability?

Conventional definitions of probability are, frankly, not much use. The most commonly used one goes something like this: suppose we do a experiment N times, and measure the number of times n we get a particular outcome. The probability P of that outcome is the value the ratio n/N approaches as N goes to infinity. This definition is of no practical value unless you can think of a way to repeat your experiment an infinite number of times. Yet sometimes we use probability to talk about experiments that cannot even be done twice. For instance, what does it mean to say, “The probability of rain tomorrow is 30%”? Tomorrow is only going to happen once, and it will either rain or it won’t. Shouldn’t the weatherman say, “The probability of rain tomorrow is either 0% or 100%, but we don’t know which?” But that wouldn’t be very useful, either…

The resolution to this problem is to realize that probability is a way of representing incomplete knowledge. When the weatherman calls for a 30% chance of rain, he is indeed saying that he doesn’t know whether it will rain tomorrow or not. But he is also saying that he has some knowledge, which leads him to believe that it is more likely that it will not rain than that it will. It is even possible to talk about the probability of events in the past. For instance, I might say that the probability that the first child born in Parkland Hospital on 11 September 2001 was a boy is 51%. Now, that child was born a year ago, and was either a boy or a girl. Still, it is reasonable for me to make the statement, because I don’t know which it was, but I do know that about 51% of newborns are boys. I have incomplete knowledge, and the probabilistic statement captures that knowledge.

Probability does not have objective existence. The same event can have different probabilities for different people, if those people have different levels of knowledge. For instance, asked for the probability that Mrs Jensen’s child will have cystic fibrosis, one doctor might say it is about 0.04%. Another doctor, who happens to know that Mrs Jensen is of African descent and that CF is rare in Africans, would say the probability is much lower. A third, who knows that Mr and Mrs Jensen already had one child with CF, would place this child’s chances at 25%. None are wrong—they just have different knowledge. 

There is a common puzzle that illustrates this point. One version of it is based on the old TV Game Show “Let’s Make a Deal”, which was hosted by Monty Hall. The contestant would be shown three doors. One of the doors had a big prize behind it, the other two had small prizes, and the contestant was asked to choose one. After the contestant had chosen one door, Monty would open one of the other two doors and show the contestant that it had a small prize behind it. (For instance, if the contestant chose door 2, Monty might show her that door 3 had a small prize behind it. It’s important to realize that because there were two small prizes, Monty could always show her one of them, regardless of her choice.) Then the contestant was given the opportunity to switch to the remaining door. (Door 1 in this example.) What should the contestant do? Should she switch, or should she stick with her first choice?

The correct answer is, she should switch. If she switches (to door 1 in the example), she has a 2/3 chance of getting the big prize. If she sticks with her first choice (2 in the example), she has only a 1/3 chance at the big one. The reasoning is as follows. The chance that her first choice was right is 1/3. She acquired no new information about that choice when Monty opened door 3, because we knew beforehand that he would open one of the other doors. Thus, the chance that door 2 is right after he opens door 3 is the same as it was before: 1/3. The chance of door 1 being right has changed however. She got new information about door 1 and 3 when he opened door 3. She learned that door 3 was wrong, so its probability went down to zero. But given a choice between doors 1 and 3, Monty chose 3 when he had to show her a small prize. That makes it more likely that 1 has the big prize. The probability must be 2/3, because the prize must be behind either door 1 or door 2, and we already worked out that there’s a 1/3 chance that it’s behind door 2. 

This answer is amazingly difficult to believe. In fact, when presented with the puzzle for the first time, many people become so frustrated and even angry that I have given up talking about it in class. If you can’t believe that switching is the correct strategy, the best way to convince yourself is to simulate the game. You need someone to play Monty Hall for you while you play the contestant. Have Monty secretly put the big prize behind one of the three doors, using some method such as throwing a die to produce a truly random choice. You then pick a door. Monty opens one of the two others. If you chose incorrectly at first, he will have only one choice. If you chose correctly, he should open one of the other two at random (but if he throws a die, he should throw a die every time so that you won’t know by what he does whether your first choice was right). If you play this game many times it will become clear to you that you only choose right the first time in 1/3 of the cases, and that when you don’t choose right, switching will always get you the big prize. If you want to be convinced faster, use 10 doors, and have Monty open 8 of them after you make your first choice. If you want to be convinced really fast, give Monty a dollar every time you play to serve as the prize—he gets to keep it if you make the wrong choice. 

The important point here is that probabilities are not fixed: they change when your information changes. This logic is of some practical value. Similar situations come up in genetic counseling, for instance, when estimating the risk that a baby will have a disease, where we have incomplete information about the genotypes of the parents.

VII. Why is the denominator for sample standard deviation N – 1?

I will give a complete proof here for the case of N = 2, and merely outline the proof for higher N.

A. N = 2

To show: 
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Proof:

For N = 2, 
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. Substituting this into the formula gives:


[image: image61.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

m

m

m

m

m

m

m

m

m

m

-

-

-

-

+

-

=

÷

ø

ö

ç

è

æ

-

-

-

-

+

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

-

-

=

÷

÷

ø

ö

ç

ç

è

æ

-

=

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

-

+

÷

÷

ø

ö

ç

ç

è

æ

-

=

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

+

-

+

÷

÷

ø

ö

ç

ç

è

æ

+

-

=

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

+

-

=

-

å

å

2

1

2

2

2

1

2

1

2

2

2

1

2

2

1

2

2

1

2

1

2

2

2

1

2

2

1

2

2

2

1

1

2

2

1

2

2

1

2

1

2

1

2

1

2

2

2

2

2

2

2

x

x

E

x

E

x

E

x

x

x

x

E

x

x

E

x

x

E

x

x

x

x

E

x

x

x

x

x

x

E

x

x

x

E

x

x

E

i

i


The xi’s are independent samples from the same distribution. Thus 
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 is known as the covariance of x1 and x2. The covariance of independent variables is always 0. So:
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QED.

B. N > 2

First, let 
[image: image65.wmf]s

m

-

=

i

i

x

y

. The y’s have mean 0 and variance 1. This simplifies the algebra. We will show that 
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Substitute 
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 into the sum. The first term of the sum expands to:
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Because the y’s are all independent, the cross-terms average to zero. The expected value of yi2 is 1. So the expected value of the first term is:
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That was one term of the sum. There are N terms total, and all have the same expected value. So, the expected value of the sum is 
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It is possible to prove a stronger result: that 
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 is equal to the sum of squares of N – 1 non-covariant variables with mean 0 and variance (2. For instance, the following will work:
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If x is normally distributed, each z will also be normally distributed. This and related theorems are important for many statistical tests that are based on the normal distribution, such as the t test and the χ-squared test.

Doing statistical tests with GraphPad Prism

Your workstations have a data analysis program called GraphPad Prism installed. Prism can be used for three of the four tests I want you to be able to do. Instructions follow.

C. Chi-squared goodness-of-fit test

Prism can't do this test. (Too simple, apparently!)

D. Chi-squared test of independence

1. Launch Prism. 

2. In the “Welcome to Prism” window, select “Work independently”, then click “OK”.

3. Type your four values in cells A1:B2.

4. Click the “Analyze” button. In the “Analyze Data” window that pops up, select “Built-in analysis”, then, under “Type”, select “Statistical Analyses” and in the list to the right select “Contingency Tables”. Click “OK”

5. In the “Contingency Tables” window, select “Chi-square test” and click “OK”. The Results appear.

E. Students t test

1. Launch Prism. 

2. In the “Welcome to Prism” window, select “Work independently”, then click “OK”.

3. Enter values for one group into column A, and values for the other group into column B. 

4. Click the analyze button. In the “Analyze Data” window that pops up, select “Built-in analysis”, then, under “Type”, select “Statistical Analyses” and in the list to the right select “t test (and nonparametric test)”. Click “OK”

5. In the “Parameters” window, just click OK. The results appear.

F. Mann-Whitney U test

1. Launch Prism. 

2. In the “Welcome to Prism” window, select “Work independently”, then click “OK”.

3. Enter values for one group into column A, and values for the other group into column B. 

4. Click the analyze button. In the “Analyze Data” window that pops up, select “Built-in analysis”, then, under “Type”, select “Statistical Analyses” and in the list to the right select “t test (and nonparametric test)”. Click “OK”

5. In the “Parameters” window, check “Nonparametric test”. Click OK. The results appear.

Note: Prism calculates U in a slightly different way than described in the instructions in Section V.D. This doesn’t matter much if you use the P value Prism supplies. (It will also work correctly with my U test on the web at http://eatworms.swmed.edu/~leon/stats/utest.html, which automatically adjusts for the way the calculation was done.) However, if you want to use the U table provided here (Section XI), you must calculate Ut = n1n2 – Up, where Up is the U value provided by Prism, and Ut is the U value to look up in the table.

VIII. Student’s t-Distribution critical values

	df
	0.5
	0.40
	0.30
	0.20
	0.10
	0.05
	0.04
	0.02
	0.01
	0.005
	0.002
	0.001

	1
	1.000
	1.376
	1.963
	3.078
	6.314
	12.71
	15.89
	31.82
	63.66
	127.3
	318.3
	636.6 

	2
	.816
	1.061
	1.386
	1.886
	2.920
	4.303
	4.849
	6.965
	9.925
	14.09
	22.33
	31.60 

	3
	.765
	.978
	1.250
	1.638
	2.353
	3.182
	3.482
	4.541
	5.841
	7.453
	10.21
	12.92 

	4
	.741
	.941
	1.190
	1.533
	2.132
	2.776
	2.999
	3.747
	4.604
	5.598
	7.173
	8.610 

	5
	.727
	.920
	1.156
	1.476
	2.015
	2.571
	2.757
	3.365
	4.032
	4.773
	5.893
	6.869 

	6
	.718
	.906
	1.134
	1.440
	1.943
	2.447
	2.612
	3.143
	3.707
	4.317
	5.208
	5.959 

	7
	.711
	.896
	1.119
	1.415
	1.895
	2.365
	2.517
	2.998
	3.499
	4.029
	4.785
	5.408 

	8
	.706
	.889
	1.108
	1.397
	1.860
	2.306
	2.449
	2.896
	3.355
	3.833
	4.501
	5.041 

	9
	.703
	.883
	1.100
	1.383
	1.833
	2.262
	2.398
	2.821
	3.250
	3.690
	4.297
	4.781 

	10
	.700
	.879
	1.093
	1.372
	1.812
	2.228
	2.359
	2.764
	3.169
	3.581
	4.144
	4.587 

	11
	.697
	.876
	1.088
	1.363
	1.796
	2.201
	2.328
	2.718
	3.106
	3.497
	4.025
	4.437 

	12
	.695
	.873
	1.083
	1.356
	1.782
	2.179
	2.303
	2.681
	3.055
	3.428
	3.930
	4.318 

	13
	.694
	.870
	1.079
	1.350
	1.771
	2.160
	2.282
	2.650
	3.012
	3.372
	3.852
	4.221 

	14
	.692
	.868
	1.076
	1.345
	1.761
	2.145
	2.264
	2.624
	2.977
	3.326
	3.787
	4.140 

	15
	.691
	.866
	1.074
	1.341
	1.753
	2.131
	2.249
	2.602
	2.947
	3.286
	3.733
	4.073 

	16
	.690
	.865
	1.071
	1.337
	1.746
	2.120
	2.235
	2.583
	2.921
	3.252
	3.686
	4.015 

	17
	.689
	.863
	1.069
	1.333
	1.740
	2.110
	2.224
	2.567
	2.898
	3.222
	3.646
	3.965 

	18
	.688
	.862
	1.067
	1.330
	1.734
	2.101
	2.214
	2.552
	2.878
	3.197
	3.611
	3.922 

	19
	.688
	.861
	1.066
	1.328
	1.729
	2.093
	2.205
	2.539
	2.861
	3.174
	3.579
	3.883 

	20
	.687
	.860
	1.064
	1.325
	1.725
	2.086
	2.197
	2.528
	2.845
	3.153
	3.552
	3.850 

	21
	.663.
	.859
	1.063
	1.323
	1.721
	2.080
	2.189
	2.518
	2.831
	3.135
	3.527
	3.819 

	22
	.686
	.858
	1.061
	1.321
	1.717
	2.074
	2.183
	2.508
	2.819
	3.119
	3.505
	3.792 

	23
	.685
	.858
	1.060
	1.319
	1.714
	2.069
	2.177
	2.500
	2.807
	3.104
	3.485
	3.768 

	24
	.685
	.857
	1.059
	1.318
	1.711
	2.064
	2.172
	2.492
	2.797
	3.091
	3.467
	3.745 

	25
	.684
	.856
	1.058
	1.316
	1.708
	2.060
	2.167
	2.485
	2.787
	3.078
	3.450
	3.725 

	26
	.684
	.856
	1.058
	1.315
	1.706
	2.056
	2.162
	2.479
	2.779
	3.067
	3.435
	3.707 

	27
	.684
	.855
	1.057
	1.314
	1.703
	2.052
	2.15
	2.473
	2.771
	3.057
	3.421
	3.690 

	28
	.683
	.855
	1.056
	1.313
	1.701
	2.048
	2.154
	2.467
	2.763
	3.047
	3.408
	3.674 

	29
	.683
	.854
	1.055
	1.311
	1.699
	2.045
	2.150
	2.462
	2.756
	3.038
	3.396
	3.659 

	30
	.683
	.854
	1.055
	1.310
	1.697
	2.042
	2.147
	2.457
	2.750
	3.030
	3.385
	3.646 

	40
	.681
	.851
	1.050
	1.303
	1.684
	2.021
	2.123
	2.423
	2.704
	2.971
	3.307
	3.551 

	50
	.679
	.849
	1.047
	1.295
	1.676
	2.009
	2.109
	2.403
	2.678
	2.937
	3.261
	3.496 

	60
	.679
	.848
	1.045
	1.296
	1.671
	2.000
	2.099
	2.390
	2.660
	2.915
	3.232
	3.460 

	80
	.678
	.846
	1.043
	1.292
	1.664
	1.990
	2.088
	2.374
	2.639
	2.887
	3.195
	3.416 

	100
	.677
	.845
	1.042
	1.290
	1.660
	1.984
	2.081
	2.364
	2.626
	2.871
	3.174
	3.390 

	1000
	.675
	.842
	1.037
	1.282
	1.646
	1.962
	2.056
	2.330
	2.581
	2.813
	3.098
	3.300 

	inf.
	.674
	.841
	1.036
	1.282
	1.645
	1.960
	2.054
	2.326
	2.576
	2.807
	3.091
	3.291 


This table was calculated using the built-in function TINV of Microsoft Excel.

IX. Critical values of the Chi-Squared Distribution

	df
	.25
	.20
	.15
	.10
	.05
	.025
	.02
	.01
	.005
	.0025
	.001
	.0005 

	1
	1.32
	1.64
	2.07
	2.71
	3.84
	5.02
	5.41
	6.63
	7.88
	9.14
	10.83
	12.12 

	2
	2.77
	3.22
	3.79
	4.61
	5.99
	7.38
	7.82
	9.21
	10.60
	11.98
	13.82
	15.20 

	3
	4.11
	4.64
	5.32
	6.25
	7.81
	9.35
	9.84
	11.34
	12.84
	14.32
	16.27
	17.73 

	4
	5.39
	5.59
	6.74
	7.78
	9.49
	11.14
	11.67
	13.23
	14.86
	16.42
	18.47
	20.00 

	5
	6.63
	7.29
	8.12
	9.24
	11.07
	12.83
	13.33
	15.09
	16.75
	18.39
	20.51
	22.11 

	6
	7.84
	8.56
	9.45
	10.64
	12.53
	14.45
	15.03
	16.81
	18.55
	20.25
	22.46
	24.10 

	7
	9.04
	9.80
	10.75
	12.02
	14.07
	16.01
	16.62
	18.48
	20.28
	22.04
	24.32
	26.02 

	8
	10.22
	11.03
	12.03
	13.36
	15.51
	17.53
	18.17
	20.09
	21.95
	23.77
	26.12
	27.87 

	9
	11.39
	12.24
	13.29
	14.68
	16.92
	19.02
	19.63
	21.67
	23.59
	25.46
	27.83
	29.67 

	10
	12.55
	13.44
	14.53
	15.99
	18.31
	20.48
	21.16
	23.21
	25.19
	27.11
	29.59
	31.42 

	11
	13.70
	14.63
	15.77
	17.29
	19.68
	21.92
	22.62
	24.72
	26.76
	28.73
	31.26
	33.14 

	12
	14.85
	15.81
	16.99
	18.55
	21.03
	23.34
	24.05
	26.22
	28.30
	30.32
	32.91
	34.82 

	13
	15.93
	15.58
	18.90
	19.81
	22.36
	24.74
	25.47
	27.69
	29.82
	31.88
	34.53
	36.48 

	14
	17.12
	18.15
	19.4
	21.06
	23.68
	26.12
	26.87
	29.14
	31.32
	33.43
	36.12
	38.11 

	15
	18.25
	19.31
	20.60
	22.31
	25.00
	27.49
	28.26
	30.58
	32.80
	34.95
	37.70
	39.72 

	16
	19.37
	20.47
	21.79
	23.54
	26.30
	28.85
	29.63
	32.00
	34.27
	36.46
	39.25
	41.31 

	17
	20.49
	21.61
	22.98
	24.77
	27.59
	30.19
	31.00
	33.41
	35.72
	37.95
	40.79
	42.88 

	18
	21.60
	22.76
	24.16
	25.99
	28.87
	31.53
	32.35
	34.81
	37.16
	39.42
	42.31
	44.43 

	19
	22.72
	23.90
	25.33
	27.20
	30.14
	32.85
	33.69
	36.19
	38.58
	40.88
	43.82
	45.97 

	20
	23.83
	25.04
	26.50
	28.41
	31.41
	34.17
	35.02
	37.57
	40.00
	42.34
	45.31
	47.50 

	21
	24.93
	26.17
	27.66
	29.62
	32.67
	35.48
	36.34
	38.93
	41.40
	43.78
	46.80
	49.01 

	22
	26.04
	27.30
	28.82
	30.81
	33.92
	36.78
	37.66
	40.29
	42.80
	45.20
	48.27
	50.51 

	23
	27.14
	28.43
	29.98
	32.01
	35.17
	38.08
	38.97
	41.64
	44.18
	46.62
	49.73
	52.00 

	24
	28.24
	29.55
	31.13
	33.20
	36.42
	39.36
	40.27
	42.98
	45.56
	48.03
	51.18
	53.48 

	25
	29.34
	30.68
	32.28
	34.38
	37.65
	40.65
	41.57
	44.31
	46.93
	49.44
	52.62
	54.95 

	26
	30.43
	31.79
	33.43
	35.56
	38.89
	41.92
	42.86
	45.64
	48.29
	50.83
	54.05
	56.41 

	27
	31.53
	32.91
	34.57
	36.74
	40.11
	43.19
	44.14
	46.96
	49.64
	52.22
	55.48
	57.86 

	28
	32.62
	34.03
	35.71
	37.92
	41.34
	44.46
	45.42
	48.28
	50.99
	53.59
	56.89
	59.30 

	29
	33.71
	35.14
	36.85
	39.09
	42.56
	45.72
	46.69
	49.59
	52.34
	54.97
	58.30
	60.73 

	30
	34.80
	36.25
	37.99
	40.26
	43.77
	46.98
	47.96
	50.89
	53.67
	56.33
	59.70
	62.16 

	40
	45.62
	47.27
	49.24
	51.81
	55.76
	59.34
	60.44
	63.69
	66.77
	69.70
	73.40
	76.09 

	50
	56.33
	53.16
	60.35
	63.17
	67.50
	71.42
	72.61
	76.15
	79.49
	82.66
	86.66
	89.56 

	60
	66.98
	68.97
	71.34
	74.40
	79.08
	83.30
	84.58
	88.38
	91.95
	95.34
	99.61
	102.7 

	80
	88.13
	90.41
	93.11
	96.58
	101.9
	106.6
	108.1
	112.3
	116.3
	120.1
	124.8
	128.3 

	100
	109.1
	111.7
	114.7
	118.5
	124.3
	129.6
	131.1
	135.8
	140.2
	144.3
	149.4
	153.2 


This table was calculated using the built-in function CHIINV of Microsoft Excel.

X. Critical values of the Mann-Whitney U statistic

	n1
	n2
	0.2
	0.1
	0.05
	0.02
	0.01
	0.002
	0.001
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	12
	1
	12
	
	
	
	
	
	

	12
	2
	20
	22
	23
	
	
	
	

	12
	3
	28
	31
	32
	34
	35
	
	

	12
	4
	36
	39
	41
	43
	45
	48
	

	12
	5
	43
	47
	49
	52
	54
	58
	59

	12
	6
	51
	55
	58
	61
	63
	68
	69

	12
	7
	58
	63
	66
	70
	72
	77
	79

	12
	8
	66
	70
	74
	79
	81
	87
	89

	12
	9
	73
	78
	82
	87
	90
	96
	98

	12
	10
	81
	86
	91
	96
	99
	106
	108

	12
	11
	88
	94
	99
	104
	108
	115
	117

	12
	12
	95
	102
	107
	113
	117
	124
	127

	
	
	
	
	
	
	
	
	

	13
	1
	13
	
	
	
	
	
	

	13
	2
	22
	24
	25
	26
	
	
	

	13
	3
	30
	33
	35
	37
	38
	
	

	13
	4
	39
	42
	44
	47
	49
	51
	52

	13
	5
	47
	50
	53
	56
	58
	62
	63

	13
	6
	55
	59
	62
	66
	68
	73
	74

	13
	7
	63
	67
	71
	75
	78
	83
	85

	13
	8
	71
	76
	80
	84
	87
	93
	95

	13
	9
	79
	84
	89
	94
	97
	103
	106

	13
	10
	87
	93
	97
	103
	106
	113
	116

	13
	11
	95
	101
	106
	112
	116
	123
	126

	13
	12
	103
	109
	115
	121
	125
	133
	136

	13
	13
	111
	118
	124
	130
	135
	143
	146

	
	
	
	
	
	
	
	
	

	14
	1
	14
	
	
	
	
	
	

	14
	2
	23
	25
	27
	28
	
	
	

	14
	3
	32
	35
	37
	40
	41
	
	

	14
	4
	41
	45
	47
	50
	52
	55
	56

	14
	5
	50
	54
	57
	60
	63
	67
	68

	14
	6
	59
	63
	67
	71
	73
	78
	79

	14
	7
	67
	72
	76
	81
	83
	89
	91

	14
	8
	76
	81
	86
	90
	94
	100
	102

	14
	9
	85
	90
	95
	100
	104
	111
	113

	14
	10
	93
	99
	104
	110
	114
	121
	124

	14
	11
	102
	108
	114
	120
	124
	132
	135

	14
	12
	110
	117
	123
	130
	134
	143
	146

	14
	13
	119
	126
	132
	139
	144
	153
	157

	14
	14
	127
	135
	141
	149
	154
	164
	167

	
	
	
	
	
	
	
	
	

	15
	1
	15
	
	
	
	
	
	

	15
	2
	25
	27
	29
	30
	
	
	

	15
	3
	35
	38
	40
	42
	43
	
	

	15
	4
	44
	48
	50
	53
	55
	59
	60

	15
	5
	53
	57
	61
	64
	67
	71
	72

	15
	6
	63
	67
	71
	75
	78
	83
	85

	15
	7
	72
	77
	81
	86
	89
	95
	97

	15
	8
	81
	87
	91
	96
	100
	106
	109

	15
	9
	90
	96
	101
	107
	111
	118
	120

	15
	10
	99
	106
	111
	117
	121
	129
	132

	15
	11
	108
	115
	121
	128
	132
	141
	144

	15
	12
	117
	125
	131
	138
	143
	152
	155

	15
	13
	127
	134
	141
	148
	153
	163
	167

	15
	14
	136
	144
	151
	159
	164
	174
	178

	15
	15
	145
	153
	161
	169
	174
	185
	189

	
	
	
	
	
	
	
	
	

	16
	1
	16
	
	
	
	
	
	

	16
	2
	27
	29
	31
	32
	
	
	

	16
	3
	37
	40
	42
	45
	46
	
	

	16
	4
	47
	50
	53
	57
	59
	62
	63

	16
	5
	57
	61
	65
	68
	71
	75
	77

	16
	6
	67
	71
	75
	80
	83
	88
	90

	16
	7
	76
	82
	86
	91
	94
	101
	103

	16
	8
	86
	92
	97
	102
	106
	113
	115

	16
	9
	96
	102
	107
	113
	117
	125
	128

	16
	10
	106
	112
	118
	124
	129
	137
	140

	16
	11
	115
	122
	129
	135
	140
	149
	152

	16
	12
	125
	132
	139
	146
	151
	161
	165

	16
	13
	134
	143
	149
	157
	163
	173
	177

	16
	14
	144
	153
	160
	168
	174
	185
	189

	16
	15
	154
	163
	170
	179
	185
	197
	201

	16
	16
	163
	173
	181
	190
	196
	208
	213

	
	
	
	
	
	
	
	
	

	17
	1
	17
	
	
	
	
	
	

	17
	2
	28
	31
	32
	34
	
	
	

	17
	3
	39
	42
	45
	47
	49
	51
	

	17
	4
	50
	53
	57
	60
	62
	66
	67

	17
	5
	60
	65
	68
	72
	75
	80
	81

	17
	6
	71
	76
	80
	84
	87
	93
	95

	17
	7
	81
	86
	91
	96
	100
	106
	109

	17
	8
	91
	97
	102
	108
	112
	119
	122

	17
	9
	101
	108
	114
	120
	124
	132
	135

	17
	10
	112
	119
	125
	132
	136
	145
	148

	17
	11
	122
	130
	136
	143
	148
	158
	161

	17
	12
	132
	140
	147
	155
	160
	170
	174

	17
	13
	142
	151
	158
	166
	172
	183
	187

	17
	14
	153
	161
	169
	178
	184
	195
	199

	17
	15
	163
	172
	180
	189
	195
	208
	212

	17
	16
	173
	183
	191
	201
	207
	220
	225

	17
	17
	183
	193
	202
	212
	219
	232
	238

	
	
	
	
	
	
	
	
	

	18
	1
	18
	
	
	
	
	
	

	18
	2
	30
	32
	34
	36
	
	
	

	18
	3
	41
	45
	47
	50
	52
	54
	

	18
	4
	52
	56
	60
	63
	66
	69
	71

	18
	5
	63
	68
	72
	76
	79
	84
	86

	18
	6
	74
	80
	84
	89
	92
	98
	100

	18
	7
	85
	91
	96
	102
	105
	112
	115

	18
	8
	96
	103
	108
	114
	118
	126
	129

	18
	9
	107
	114
	120
	126
	131
	139
	142

	18
	10
	118
	125
	132
	139
	143
	153
	156

	18
	11
	129
	137
	143
	151
	156
	166
	170

	18
	12
	139
	148
	155
	163
	169
	179
	183

	18
	13
	150
	159
	167
	175
	181
	192
	197

	18
	14
	161
	170
	178
	187
	194
	206
	210

	18
	15
	172
	182
	190
	200
	206
	219
	224

	18
	16
	182
	193
	202
	212
	218
	232
	237

	18
	17
	193
	204
	213
	224
	231
	245
	250

	18
	18
	204
	215
	225
	236
	243
	258
	263

	
	
	
	
	
	
	
	
	

	19
	1
	18
	19
	
	
	
	
	

	19
	2
	31
	34
	36
	37
	38
	
	

	19
	3
	43
	47
	50
	53
	54
	57
	

	19
	4
	55
	59
	63
	67
	69
	73
	74

	19
	5
	67
	72
	76
	80
	83
	88
	90

	19
	6
	78
	84
	89
	94
	97
	103
	106

	19
	7
	90
	96
	101
	107
	111
	118
	120

	19
	8
	101
	108
	114
	120
	124
	132
	135

	19
	9
	113
	120
	126
	133
	138
	146
	150

	19
	10
	124
	132
	138
	146
	151
	161
	164

	19
	11
	136
	144
	151
	159
	164
	175
	178

	19
	12
	147
	156
	163
	172
	177
	188
	193

	19
	13
	158
	167
	175
	184
	190
	202
	207

	19
	14
	169
	179
	188
	197
	203
	216
	221

	19
	15
	181
	191
	200
	210
	216
	230
	235

	19
	16
	192
	203
	212
	222
	230
	244
	249

	19
	17
	203
	214
	224
	235
	242
	257
	263

	19
	18
	214
	226
	236
	248
	255
	271
	277

	19
	19
	226
	238
	248
	260
	268
	284
	291

	
	
	
	
	
	
	
	
	

	20
	1
	19
	20
	
	
	
	
	

	20
	2
	33
	36
	38
	39
	40
	
	

	20
	3
	45
	49
	52
	55
	57
	60
	

	20
	4
	58
	62
	66
	70
	72
	77
	78

	20
	5
	70
	75
	80
	84
	87
	93
	95

	20
	6
	82
	88
	93
	98
	102
	108
	111

	20
	7
	94
	101
	106
	112
	116
	124
	126

	20
	8
	106
	113
	119
	126
	130
	139
	142

	20
	9
	118
	126
	132
	140
	144
	154
	157

	20
	10
	130
	138
	145
	153
	158
	168
	172

	20
	11
	142
	151
	158
	167
	172
	183
	187

	20
	12
	154
	163
	171
	180
	186
	198
	202

	20
	13
	166
	176
	184
	193
	200
	212
	217

	20
	14
	178
	188
	197
	207
	213
	226
	231

	20
	15
	190
	200
	210
	220
	227
	241
	246

	20
	16
	201
	213
	222
	233
	241
	255
	261

	20
	17
	213
	225
	235
	247
	254
	270
	275

	20
	18
	225
	237
	248
	260
	268
	284
	290

	20
	19
	237
	250
	261
	273
	281
	298
	304

	20
	20
	249
	262
	273
	286
	295
	312
	319


This table was generated using software I developed, which can be found at http://eatworms.swmed.edu/~leon/stats/utest.html. Some of the larger values were calculated by an approximate method and may be incorrect by ±1. (For instance, the correct critical value for n1 = 20, n2 = 20, P = 0.002 may be 311 or 313 instead of the value shown, 312.) This possible minor inaccuracy may be safely ignored for most practical purposes.
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